
- 1 -

Dynamics Within an Organisation:
Temporal Specification, Simulation and Evaluation

Catholijn M. Jonker1, Jan Treur1 and Wouter C.A. Wijngaards1

1Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Email: <{jonker,treur,wouterw}@cs.vu.nl> URL: http://www.cs.vu.nl/{~jonker,~treur,~wouterw}

 A crucial aspect of a multi-agent organisation is its dynamics. In this paper different
types of specifications of properties of the dynamics within an organisation are
introduced. Supporting tools for specification, simulation and analysis of dynamics
within multi-agent organisations have been implemented.

1. INTRODUCTION

Multi-agent systems often have complex dynamics, both in human society and
in the non-human case. Organisational structure is used as a means to handle these
complex dynamics. It provides a structuring of the processes in such a manner that
an agent involved can function in a more appropriate manner. For example, at
least partly the behavioural alternatives for the other agents are known. Put
differently, the flow of dynamics within a given organisational structure is much
more predictable than in an entirely unstructured situation. This assumes that the
organisational structure itself is relatively stable, i.e., the structure may change,
but the frequency and scale of change are assumed low compared to the more
standard flow of dynamics through the structure. Both types of dynamics,
dynamics within an organisational structure, and dynamics of an organisational
structure are quite relevant to the area of organisation modelling. In this paper, for
reasons of focussing the former type of dynamics is addressed.

Models for the dynamics within an organisation can be specified to be used as a
basis for simulation, also called executable models. These types of models can be
used to perform (pseudo-)experiments. A language for executable organisation
models should be formal, and as simple as possible, to avoid computational
complexity. Expressivity can be limited. Software tools to support such a
language serve as simulation environment.

A language to specify and analyse dynamic properties of the flow within an
organisation, on the other hand, should be sufficiently expressive; executability,
however, is not required for such a language. What is important, though, is that
properties specified in such a language can be checked for a given sample
behaviour (e.g., a simulation run) without much work, preferably in an automated
manner. Moreover, it is useful if a language to specify properties provides
possibilities for further analysis of logical relationships between properties, and to
generate theories about organisation dynamics. For these reasons also a language
to specify properties of the dynamics within an organisation should be formal, and
at least partly supported by software tools (analysis environment).

In this paper, for the Agent-Group-Role (AGR) organisation modelling approach
introduced in (Ferber and Gutknecht, 1998), two temporal specification languages
are put forward and illustrated for an example organisation. In Section 2 the static

- 2 -

and dynamic view of the AGR modelling approach is briefly introduced. In
Section 3 it is shown how languages to model dynamics within such a model can
be defined. Section 4 discusses the example and the simulation environment.

2. ORGANISATION MODELLING AND BEHAVIOUR

To model an organisation, the Agent/Group/Role (AGR) approach, adopted
from (Ferber and Gutknecht, 1998) is used. The organisational structure is the
specification of a specific multi-agent organisation based on a definition of
groups, roles and their relationships within the organisation. A central notion is
the group structure. It identifies the roles and (intragroup) interaction between
roles within a group. The group structure is defined by the set of roles, interaction
schemes and an (intragroup) transfer or communication model within the group.
In addition, (intergroup) role relations between roles of different groups specify
the connectivity of groups within an organisation.

To be able to simulate or analyse dynamics within an organisation, in addition to
the static organisation structure specification discussed above, as part of an
organisation model also a specification of dynamics within the organisation is
needed. To this end, in the specification of an organisation model the following
types of specifications of dynamic properties are distinguished: single role
behaviour properties, intragroup interaction properties, intragroup transfer
properties, intergroup interaction properties, global group properties and global
organisation properties. These properties serve as constraints on the dynamics of
the respective roles and interactions.

Within this paper examples are taken from a case study that has been performed
in the context of the Rabobank, one of the largest banks in the Netherlands, see
(Brazier et al., 1999). The case study addressed design and analysis of a multi-
agent approach for a bank service provision problem using a Call Centre.

3. TEMPORAL SPECIFICATION OF DYNAMICS
WITHIN AN ORGANISATION

During the development of an organisation model, means to model dynamics
should also play an important role. In Section 3.1 a language, TTL, is presented that
is suitable for the specification and analysis of dynamical organisational
properties. In order to simulate dynamics, in addition an executable temporal
language is introduced in Section 3.2.

3.1. The Language to Specify Dynamic Properties
To specify properties on the dynamics within the organisation, the temporal

trace language used in (Jonker and Treur, 1998; Herlea, Jonker, Treur, and
Wijngaards, 1999) is adopted. States of a trace can be related to state properties
via the formally defined satisfaction relation |== between states and formulae.
Comparable to the approach in situation calculus, the order sorted predicate logic
temporal trace language TTL is built on atoms referring to traces, time and state
properties, such as state(M , t, output(R)) |== p.

- 3 -

As an example, a dynamic property for the dynamics within the organisation as
a whole is shown. The organisation in question consists of an open group (for
interaction) with clients and distributor groups. The distributor groups divide the
workload over the organisation. To be able to specify ongoing interaction between
two roles for which multiple appearances exist, the notion of role instance is used.
This notion abstracts from the agent realising the role as actor, but enables to
distinguish between appearances of roles. The example property concerns the
open group and its two roles: the client role and the receptionist role.

GR1 All requests answered
This global organisation property specifies that at any point in time, if a client
communicates a request to the receptionist, then at some later time point the
receptionist will communicate either an acceptance or a rejection of the request to
this client.

∀ M : TRACES ∀ tid : TaskId, ∀ t1, tf : T ∀ C: CLIENT:open_group
∀ R: RECEPTIONIST: open_group: [state(M , t1, output(C)) |==
comm_from_to(requested(tid, tf), C, R) ⇒ ∃ t2 : T [t2 ≥ t1 &
[state(M , t2, input(C)) |== comm_from_to(rejected(tid), R, C) ∨
state(M , t2, input(C)) |== comm_from_to(accepted(tid), R, C)]]

3.2. The Executable Language to Specify Simulation Models
To obtain an executable language, in comparison with the very expressive

temporal trace language discussed above strong constraints are imposed on what
can be expressed. These constraints define a temporal language within the
paradigm of executable temporal logic; cf. (Barringer et al., 1996). Roughly
spoken, in this executable language it can only be expressed that

if a certain state property α on some part of the organisation holds for a certain time
interval, then after some delay another state property β on a part of the organisation should
hold for a certain time interval.

This specific temporal relationship •→→ (leads to) is definable within the
temporal trace language TTL. Only role behaviour, intergroup role interaction and
transfer properties need to be specified in the executable language. The other
types of properties are emergent in the simulation process.

Input for the simulation environment is a set of executable temporal formulae
expressed in terms of the leads to relation •→→, i.e., in the format defined above.
Thus, the example executable organisation model is expressed in terms of such
formulae. Examples taken from this example specification are:

IrRI1 Receptionist-Distributor Intergroup Role Interaction
This property expresses that if the receptionist of the open (or Client Service)
group instance receives a request from a client, then the distributor role instance
of cc the group instance of the distribution group forwards this request to the
participants in his group.

∀ tid : TASKID, ∀ tf : COMPLETIONTIME, ∀ P : PARTICIPANT:cc:DISTRIBUTION
∀ R : RECEPTIONIST:open_group:OPEN_GROUP, ∀ C : CLIENT:open_group:OPEN_GROUP,
∀ D : DISTRIBUTOR:cc:DISTRIBUTION, ∀ r : REGION,
[INTERGROUP_ROLE_RELATION(R, D) & CLIENT_REGION_RELATION(C, r) &
REGION_BANK_RELATION(r, P)] ⇒ [input(R):comm_from_to(requested(tid, tf), C, R)

 •→→5,5,10,10 output(D):comm_from_to(requested(tid, tf), D, P)]

- 4 -

IrRI2 Distributor-Receptionist Intergroup Role Interaction
Property IrRI2 expresses that any information regarding the request of a client that
the distributor instance of the distribution group instance cc receives is forwarded
to the client by the receptionist role instance of the client server group instance
(also called open group). In the example, for reasons of presentation we assume
that only one client exists. If more clients are handled at the same time, an
additional condition is needed to guarantee that the right client is notified.

∀ tid : TASKID, ∀ R : RECEPTIONIST:open_group:OPEN_GROUP,
∀ C : CLIENT:open_group:OPEN_GROUP, ∀ info : TASKINFORMATION
∀ D : DISTRIBUTOR:cc:DISTRIBUTION, ∀ P : PARTICIPANT:cc:DISTRIBUTION,
 [INTERGROUP_ROLE_RELATION(R, D)] ⇒ [input(D):comm_from_to(info(tid), P, D)

 •→→5,5,10,10 output(R):comm_from_to(info(tid), R, C)]

IrRI3 Participant-Distributor Intergroup Role Interaction
Property IrRI3 expresses that the Distributor of a local bank group forwards
requests to the Participants of that local bank group.

∀ tid : TASKID, ∀ tf : COMPLETIONTIME, ∀ D1 : DISTRIBUTOR:cc:DISTRIBUTION,
∀ P1 : PARTICIPANT:cc:DISTRIBUTION, ∀ GI : DISTRIBUTION, ∀ D2 : DISTRIBUTOR:GI:DISTRIBUTION,
∀ P2 : PARTICIPANT:GI:DISTRIBUTION: [GI

�
 cc & INTERGROUP_ROLE_RELATION(P1, D2)] ⇒

[input(P1):comm_from_to(requested(tid, tf), D1, P1)

•→→0.5,0.5,1,1 output(D2):comm_from_to(requested(tid, tf), D2, P2)]

TR7 Workmanager-Employee communication for assignments
If the Distributor of a local bank group instance communicates to a Participant of
the local bank group instance that he is assigned some task, then this
communication will be received by that Participant of the local bank group
instance some time later.

∀ tid : TASKID, ∀ GI : DISTRIBUTION, ∀ D : DISTRIBUTOR:GI:DISTRIBUTION,
∀ P : PARTICIPANT:GI:DISTRIBUTION [GI

�
 cc ⇒ [output(D):comm_from_to(assigned(tid), P2, D2)

•→→5,5,1,1 input(P):comm_from_to(assigned(tid), P1, D1)]]

4. SOFTWARE ENVIRONMENT

A software environment has been created to enable the analysis and simulation
of the dynamics within organisation models with all the usual benefits of rapid
prototyping. First, Following the paradigm of executable temporal logic, cf.
(Barringer et al., 1996), a 8000 line simulation program was written in C++ to
automatically generate the consequences of the temporal relationships within the
executable organisation specification. The program is a special purpose tool to
derive the results reasoning forwards in time, as in executable temporal logic.

Second, an analysis environment with three tools has been created. A Prolog
programme of about 500 lines checks if a given behavioural property is fulfilled in
a given trace of set of traces. Another program, of about 4000 lines C++, takes an
existing trace of behaviour and a set of temporal relationships and checks which
temporal relationships hold in the trace. It will mark unexpected and expected but
absent deficiencies in the trace. A third tool of about 300 lines of Prolog, is a
dedicated prover of properties for all traces of an (executable) specification.

- 5 -

5. DISCUSSION

In this paper specification and uses of models of the dynamics within a multi-
agent organisation are addressed. A declarative temporal language is proposed as
a basis for simulation. This language belongs to the class of executable temporal
languages; cf. (Barringer et al., 1996). Models can be specified in a declarative
manner based on a temporal ‘leads to’ relation; within the simulation environment
these models can be executed. Moreover, to specify dynamic properties another
language is put forward: a temporal trace language that belongs to the family of
languages to which also situation calculus (McCarthy and P. Hayes, 1969), event
calculus (Kowalski and Sergot, 1986), and fluent calculus (Hölldobler and
Thielscher, 1990) belong. The executable language for simulations is definable
within this much more expressive language.

Supporting tools have been implemented; a software environment for simulation
of a multi-agent organisation model and a software environment for analysis of
dynamic properties against traces for such a model. The analysis environment, see
the full paper (Jonker, Treur & Wijngaards, 2001), includes three different tools,
briefly described in Section 4. These tools assume a finite time frame. A simple
example organisation model illustrates the benefit of the language and of the
software environment for organisational modelling.

REFERENCES
Barringer, H., M. Fisher, D. Gabbay, R. Owens, & M. Reynolds (1996). The Imperative Future:

Principles of Executable Temporal Logic, Research Studies Press Ltd. and John Wiley & Sons.
Brazier, F. M. T., Jonker, C. M., Jüngen, F. J., and Treur, J. (1999). Distributed Scheduling to

Support a Call Centre: a Co-operative Multi-Agent Approach. In: Applied Artificial Intelligence
Journal, vol. 13, pp. 65-90. H. S. Nwana and D. T. Ndumu (eds.), Special Issue on Multi-Agent
Systems.

Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis and design of organisations
in multi-agent systems. In: Proc. of the Third International Conference on Multi-Agent Systems
(ICMAS '98). IEEE Computer Society, 1998

Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E. (1999). Specification of
Behavioural Requirements within Compositional Multi-Agent System Design. In: F.J. Garijo, M.
Boman (eds.), Multi-Agent System Engineering, Proc. of the 9th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'99. Lecture Notes in AI, vol.
1647, Springer Verlag, 1999, pp. 8-27.

Hölldobler, S., and Thielscher, M. (1990). A new deductive approach to planning. New
Generation Computing, 8:225-244, 1990.

Jonker, C.M., and Treur, J. (1998). Compositional Verification of Multi-Agent Systems: a
Formal Analysis of Pro-activeness and Reactiveness. In: W.P. de Roever, H. Langmaack, A.
Pnueli (eds.), Proceedings of the International Workshop on Compositionality, COMPOS'97.
Lecture Notes in Computer Science, vol. 1536, Springer Verlag, 1998, pp. 350-380. Extended
version in: International Journal of Cooperative Information Systems. To appear.

Jonker, C.M, Treur, J and Wijngaards, W.C.A. (2001). Dynamics Within an Organisation:
Temporal Specification, Simulation and Evaluation. Report. Vrije Universiteit Amsterdam,
Department of Artificial Intelligence.

Kowalski, R., and Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4:67-95, 1986.

McCarthy, J. and P. Hayes, P. (1969). Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463--502, 1969.

